The vision of NFDI4Chem is the provision of a sustainable Research Data Management infrastructure through the application of digitalisation principles to all key steps of research in chemistry. NFDI4Chem will support scientists in their efforts to collect, store, process, analyse, disclose and re-use research data in Chemistry. Measures to promote Open Science and RDM in agreement with the FAIR data principles are fundamental aspects of NFDI4Chem to serve the community with a holistic concept for access to research data. To this end, the overarching objective is the development and maintenance of a national research data infrastructure for the research domain of chemistry in Germany, and to enable innovative services and science based on research data.

NFDI4Chem focuses on molecules and data for their characterisation and reactions, both experimental and theoretical. This overarching goal is achieved by working towards a number of key objectives

Key Objective 1: Establish a virtual environment of federated repositories for storing, disclosing, searching and re-using research data across distributed data sources. Connect existing data repositories and, based on a requirements analysis, build one or multiple domain-specific research data repositories for the national research community, and link them to international repositories.

Key Objective 2: Initiate international community processes to establish minimum information (MI) standards for data and machine-readable metadata as well as open data standards in key areas of chemistry, where missing, in order to support the FAIR principles for research data.

Key Objective 3: Foster cultural and digital change towards Smart Laboratory Environments by promoting the use of digital tools in all stages of research and promote subsequent RDM at all levels of academia, beginning in undergraduate studies curricula.

Key Objective 4: Engage with the chemistry community in Germany through a wide range of measures to create awareness for, and foster the adoption of, FAIR data management. Initiate processes to integrate RDM and data science into curricula. Offer a wide range of training opportunities for researchers.

Key Objective 5: Explore synergies with other consortia and promote cross-cutting development within the NFDI.

Key Objective 6: Provide a legally reliable framework of policies and guidelines for FAIR RDM.

Based on this analysis, we have designed the work programme of NFDI4Chem to achieve a breakthrough in RDM in chemistry. Our six task areas (TA) each address one or more of the issues identified above. We base our work on integrating the existing lighthouses of RDM in our research domain, fill gaps both in the repository landscape and the underlying standards, develop and disseminate powerful tools to enable early digital data and metadata capture in the lab, and develop a strong training programme for chemists to understand and adopt the concepts developed in NFDI4Chem. Also, we dedicate a full task area to leveraging the synergies between the NFDI4Chem and the NFDI as a whole